quaternions:definitions
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| quaternions:definitions [2025/10/02 14:39] – [Convention de notation] admin | quaternions:definitions [2025/11/30 20:39] (current) – [Convention de notation] admin | ||
|---|---|---|---|
| Line 1: | Line 1: | ||
| [[: | [[: | ||
| ====== Quaternions ====== | ====== Quaternions ====== | ||
| + | |||
| + | ===== Structures algébriques ===== | ||
| + | |||
| + | ==== Quaternions ==== | ||
| + | |||
| Un **quaternion** est un élément du corps non commutatif $\mathbb{H}$ qui est l' | Un **quaternion** est un élément du corps non commutatif $\mathbb{H}$ qui est l' | ||
| Line 13: | Line 18: | ||
| - | ===== Remarque cruciale | + | |
| + | |||
| + | ==== Remarque cruciale ==== | ||
| En employant les symboles $e_{1}, | En employant les symboles $e_{1}, | ||
| Line 56: | Line 63: | ||
| | $P, Q, R, ...$ | des quaternions | | | $P, Q, R, ...$ | des quaternions | | ||
| | $\mathcal{R}, | | $\mathcal{R}, | ||
| - | | $\mathcal{L}, | ||
| | $\vec{V}, \vec{W}, ... $ | des quaternions purement vectoriels (partie scalaire nulle) | | | $\vec{V}, \vec{W}, ... $ | des quaternions purement vectoriels (partie scalaire nulle) | | ||
| | $U, U_1, U_2, ...$ | des quaternions unitaires (de norme 1) | | | $U, U_1, U_2, ...$ | des quaternions unitaires (de norme 1) | | ||
quaternions/definitions.1759408743.txt.gz · Last modified: by admin
