User Tools

Site Tools


quaternions:definitions

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
quaternions:definitions [2020/08/06 22:28] – [Forme exponentielle] adminquaternions:definitions [2023/11/01 14:44] (current) – external edit 127.0.0.1
Line 2: Line 2:
 ====== Quaternions ====== ====== Quaternions ======
  
-Un **quaternion** est un élément du corps non commutatif $\mathbb{H}$ qui est l'extension des réels engendrée par les unités $e_{1},e_{2},e_{3}$ telles que $e_{1}^{2}=e_{2}^{2}=e_{3}^{2}=e_{1}e_{2}e_{3}=-1$.+Un **quaternion** est un élément du corps non commutatif $\mathbb{H}$ qui est l'extension des réels engendrée par les unités $e_{1},e_{2},e_{3}$ telles que ${e_1}^{2}={e_2}^{2}={e_3}^{2}=e_{1}e_{2}e_{3}=-1$.
  
 Un quaternion $Q$ peut s'écrire sous la forme $q_{0}+q_{1}e_{1}+q_{2}e_{2}+q_{3}e_{3}$ où les $q_{i}$ sont des réels. Un quaternion $Q$ peut s'écrire sous la forme $q_{0}+q_{1}e_{1}+q_{2}e_{2}+q_{3}e_{3}$ où les $q_{i}$ sont des réels.
Line 46: Line 46:
 | carré                               | $Q^{2}=2\mathbb{S}(Q)Q-\left|Q\right|^{2}$  | | carré                               | $Q^{2}=2\mathbb{S}(Q)Q-\left|Q\right|^{2}$  |
 | si $Q=\vec{V}$ est purement vectoriel) | $\vec{V}^{2}=-\left|\vec{V}\right|^{2}$  | | si $Q=\vec{V}$ est purement vectoriel) | $\vec{V}^{2}=-\left|\vec{V}\right|^{2}$  |
-| non commutativité                   | $PQ - QP = \mathbb{V}(P)\wedge\mathbb{V}(Q) - \mathbb{V}(Q)\wedge\mathbb{V}(P2(\mathbb{V}(P)\wedge\mathbb{V}(Q))$ |+| non commutativité                   | $ QP = PQ - 2(\mathbb{V}(P)\wedge\mathbb{V}(Q))$ | 
 +|                                     | $ QP = PQ 2\mathbb{V}(P)\mathbb{V}(Q2\mathbb{V}(P) \cdot \mathbb{V}(Q)$ |
 | conjugaisons                        | $\overline{(\overline{Q})}=Q$ |  | conjugaisons                        | $\overline{(\overline{Q})}=Q$ |
 | :::                                   | $\overline{P+Q}=\overline{P}+\overline{Q}$ | | :::                                   | $\overline{P+Q}=\overline{P}+\overline{Q}$ |
Line 59: Line 60:
 | :::                                 | $\overline{Q}^{-1}=\frac{Q}{\left|Q\right|^{2}}$ | | :::                                 | $\overline{Q}^{-1}=\frac{Q}{\left|Q\right|^{2}}$ |
 | :::                                 | $\left(PQ\right)^{-1}=Q^{-1}P^{-1} $ | | :::                                 | $\left(PQ\right)^{-1}=Q^{-1}P^{-1} $ |
-| exponentiation                      | $\exp(Q)=e^{\mathbb{S}(Q)}\left(\cos(|\mathbb{V}(Q)|)+\frac{\mathbb{V}(Q)}{|\mathbb{V}(Q)|}\sin(|\mathbb{V}(Q)|)\right) $ |+<html><a name="exp"></html>exponentiation                      | $\exp(Q)=e^{\mathbb{S}(Q)}\left(\cos(|\mathbb{V}(Q)|)+\frac{\mathbb{V}(Q)}{|\mathbb{V}(Q)|}\sin(|\mathbb{V}(Q)|)\right) $ |
  
  
Line 92: Line 93:
 | $Q$ <html><br></html> $q_0 = |Q|cos\theta$ <html><br></html> $\vec{Q} = \vec{u}|Q|sin\theta$ | $\leftarrow$ | $|Q|e^{\vec{u}\theta}$ | | $Q$ <html><br></html> $q_0 = |Q|cos\theta$ <html><br></html> $\vec{Q} = \vec{u}|Q|sin\theta$ | $\leftarrow$ | $|Q|e^{\vec{u}\theta}$ |
  
-Si  $\vec{Q} = 0$  alors  $\vec{u}$ peut être choisi arbitrairement. Par exemple,  $Q= –1 = |1| e^{(2n+1)\pi \vec{u} } pour $n$ un entier quelconque et $\vec{u}$ un quaternion vectoriel unitaire quelconque.+Si  $\vec{Q} = 0$  alors  $\vec{u}$ peut être choisi arbitrairement. Par exemple,  $Q= –1 = |1| e^{(2n+1)\pi \vec{u} }pour $n$ un entier quelconque et $\vec{u}$ un quaternion vectoriel unitaire quelconque.
  
  
quaternions/definitions.1596745687.txt.gz · Last modified: 2023/11/01 14:43 (external edit)